AP Calculus AB

Unit 3 – Introduction to Differentiation

AP Calculus AB – Worksheet 20

1	Find the average rate of change of $f(x) = x^3 + 1$ over the interval [2,3].		
2	Find the average rate of change of $f(x) = \sqrt{4x+1}$ over the interval [2,12].		
3	Find the average rate of change of $f(x) = 2 + \cos x$ over the interval $[0, \pi]$.		
4	 The amount of money in a bank account, called the <i>balance</i>, after <i>t</i> years is f(t)=100(1.08)^t dollars. a) What are the units of the rate of change of f(t). b) Find the average rate of change of the balance over the time interval [0,0.5]. Explain the meaning of this value in the context of the bank account. 		
5	The amount of money in a bank account, called the <i>balance</i> , after <i>t</i> years is $f(t) = 200(0.94)^t$ dollars. Find the average rate of change of the balance over the time interval [0,0.5]. Explain the meaning of this value in the context of the bank account.		
6	The table below shows the weight, in lbs., of a grown man over a certain time period, <i>t</i> , in years. Consider the first year of the data collection period as $t = 0$. Year 0 2 5 6 10 Weight 145 160 175 160 185 a) Find the average rate of change of the man's weight over the time period [0,10], using correct units. b) Estimate the instantaneous rate of change of the man's weight at year four using correct units.		
7	Evaluate $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for a) $f(x) = x^2 - 4x + 5$ b) $f(x) = 2x + 5$		
8	Find the equation of the line that passes through $(2,4)$ and is perpendicular to $2x - 4y = 7$.		
9	Verify that $f(x) = \begin{cases} x^2 + x - 3, & x \le 2\\ 2x + 1, & x > 2 \end{cases}$ is either continuous or discontinuous at $x = 2$.		

Find the derivative of the function using the limit process.

Remember: The derivative is a new function, so it requires new notation; Example: f'(x) or $\frac{dy}{dx}$ or y'

1	g(x) = -5
2	$h(x) = \frac{3}{2}x + 3$

Find the slope of the tangent line to the graph of the function at the given point.

3	$f(t) = 5t - t^2;$ (1,2)
4	$f(x) = 7 - 9x^2$; (1,-2)

Find the equation of the tangent line to the graph of the function at the given value of x.

5 $f(x) = x^2 + 2x + 1, x = -4$

6 What is the value	k if $f(x) = \begin{cases} 2kx^2 - x, & x < 3 \\ x^3 + x, & x \ge 3 \end{cases}$ is continuous at all real numbers?	
---------------------	---	--

The table below shows selected values for a function, f(x), at various values of x.

x	0	1	2	5	9
f(x)	14	18	24	32	44

7) Find the average rate of change of the function over the interval [1,2].

8) Find the average rate of change of the function over the interval [5,9].

9) Estimate the slope of the function when x=3.

AP Calculus AB - Worksheet 22

Nearly all men can stand adversity, but if you want to test a man's character, give him power. - Abraham Lincoln

Review

Find the value of *a* so that the function $f(x) = \begin{cases} 4-x^2, & x < -1 \\ ax^2 - 3, & x \ge -1 \end{cases}$ is continuous. Show all necessery work.

Use the Power Rule to find the **derivative** of each function.

1) $y = x^5$	$2) f(x) = 4x^3$	3) $f(x) = 3x^2 - 4x + 1$
4) y = 5x - 1	5) $f(t) = -2t^2 + 3t - 6$	$6) f(x) = \frac{1}{x^7}$
7) $f(x) = 2x^{-1} + 5x^2$	$8) f(x) = \sqrt[4]{x}$	9) $y = \sqrt[3]{x^2}$

Find the **instantaneous rate of change** of each function when x = 1.

10) $y = \frac{1}{3}x^{-3}$	11) f(x) = 8	12) $y = 4x^{-2} - 8x + 1$
13) $f(x) = \frac{x^{-4}}{4} - \frac{x^{-3}}{3} + \frac{x^{-2}}{2} - x^{-1} + 3$	$14) y = 2\sqrt{x} - \frac{1}{\sqrt{x}}$	15) $f(x) = x^{\frac{4}{5}} + x^{\frac{2}{3}} - 3$

Find the **slope of the curves** at the indicated values of *x*.

16) $y = x^4 - 3x^2 + 2$,	<i>x</i> =2	$17) f(x) = x^3 + x,$	x = -1
18) $f(x) = \frac{2}{\sqrt[4]{x^3}},$	<i>x</i> = 1	19) $y = x^3 + 3x^2 + 2x$,	x = 0

20) Evaluate
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 5(x + \Delta x) + 6 - (x^2 - 5x + 6)}{\Delta x}$$
 using the **power rule shortcut**. (Make connections)

21) Find two unique functions, f(x), such that both of their derivatives are $f'(x) = x^2 + 2x + 8$. (Answers will vary)

For each of the following:

- a) Graph the curve.
- b) Find the equation of the tangent line at the given point. Graph the tangent line.
- c) Find the equation of the normal to the curve at the given point. Graph the normal line.

1. $y = x^2 - 3$, (2,1) 2. $f(x) = \sqrt{x}$, (4,2) 3. $y = 2 - 4x^{-2}$, (2,1)

4. Find the equation of the tangent line to the curve $f(x) = 4x^2 + 8x + 1$ at x = 1.

- 5. Find the equation of the normal line to the curve $f(x) = 3x^2 x^3$ at x = -2.
- 6. Find the point(s) on the curve $f(x) = 2x^3 + 3x^2 12x + 1$ where the tangent is horizontal.
- 7. Find all values of x for which the graph of $g(x) = x^3 17x^2 + 63x$ have horizontal tangent lines.
- 8. For what point on the curve of $f(x) = 8x^2 7x$ is the slope of the tangent line equal to -87.
- 9. Find an equation of the tangent line to the curve $y = x^{\frac{3}{2}}$ that is parallel to the line y = 1 + 3x.

10. Challenge Problem Find a parabola with equation $f(x) = ax^2 + bx + c$ such that:

- f(2) = 15
- f'(1) = 4
- f'(-1) = -8

(Hint: You will create 3 different equations in order to solve for a, b, and c.)

11. Evaluate $\lim_{h \to 0} \frac{(x+h)^3 - 2(x+h) - (x^3 - 2x)}{h}$ using the Power Rule.

For problems 1-14, find f'(x). Do not simplify your answer.

1. $f(x) = (3x+2)^8$ 2. $f(x) = (1-x)^6$ 3. $f(x) = (1-2x^2)^3$ 4. $f(x) = (x^2+3x+1)^5$ 5. $f(x) = \frac{1}{(x^2+2)^3}$ 6. $f(x) = \sqrt{x+1}$ 7. $f(x) = (2x^2-3x+1)^4$ 8. $f(x) = \sqrt{x^2+2x-1}$ 9. $f(x) = \frac{1}{\sqrt[3]{x^3+3}}$ 10. $f(x) = (x^2-4)^{-\frac{1}{2}}$ 11. $f(x) = 6x^4 - 8x^3$ 12. $f(x) = \frac{2}{3x-5}$ 13. $f(x) = (-9x + \sqrt{x})^{-2}$ 14. $f(x) = \frac{1}{x^5}$ 15. $f(x) = (4x^6 - 5x^5 + 5)^{23}$

Write the equation of the normal line at the given *x*-value.

16. $f(x) = 2x^3 - 2x - 7$ when x = -1 **17.** $f(x) = (2x+3)^3$ when x = 0 **18.** $f(x) = \sqrt{x-1}$ when x = 5**19.** $f(x) = \frac{2}{x^3}$ when x = 2

AP Calculus AB - Worksheet 25

6. $M(x) = \frac{2x^3 - 7x^2 + 4x + 3}{x^2}$

8. $p(x) = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$

12. $F(t) = t^2 + \frac{1}{t^2}$

Differentiate the following functions. Do not simplify the answer

1.
$$g(t) = 6t^{\frac{5}{3}}$$
 2. $B(x) = \frac{8x^2 - 6x + 11}{x - 1}$

3.
$$G(v) = \frac{v^3 - 1}{v^3 + 1}$$
 4. $f(s) = 15 - s - 4s^2 - 5s^4$

5.
$$f(x) = \frac{1}{1 + x + x^2 + x^3}$$

7.
$$f(x) = 3x^2 + \sqrt[3]{x^4}$$

9.
$$g(x) = x^4 - \sqrt[4]{x^3}$$
 10. $h(x) = (5x - 4)^2$

11.
$$k(x) = (2x^2 - 4x + 1)(6x - 5)$$

13.
$$f(x) = \frac{4x-5}{3x+2}$$
 14. $N(z) = \frac{4z^2}{3z+2}$

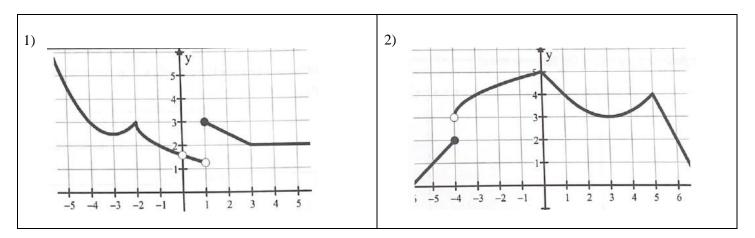
15.
$$k(r) = r^3 \left(3r^4 - 7r^2 + 2r \right)$$
 16. $S(x) = \frac{1}{\left(6x + 5 \right)^3}$

17. The function *f* is defined by $f(x) = \frac{x}{x+2}$. Determine the points (x, y) on the graph of *f* for which the slope of the tangent line to *f* at (x, y) has slope $\frac{1}{2}$.

AP Calculus AB – Worksheet 26

Estimate the derivative at the given point by using a calculator.

1	$f(x) = x\sqrt{2-x}; \text{ find } f'(-10)$
2	$f(x) = \cos(5x); \text{ find } f'(2)$
3	$f(x) = \ln(\sqrt{x}); \operatorname{find} f'(1)$
4	$f(x) = e^{\frac{x}{3}}; \text{ find } f'(4)$
5	$f(x) = \tan(\sin x); \operatorname{find} f'(-3)$
6	$f(x) = 2^{\ln x}$; find $f'(2)$
7	The function $f(t) = \frac{t}{\cos t}$ measures the height of a bird in meters where t is seconds. Find $f'(2)$.
8	The function $f(t) = \sin^2 t$ measures the depth of a submarine measured in feet where t is minutes. Find $f'(12.5)$
9	For $f(x) = \cos(\tan x)$, find the equation of the tangent line and normal line at $x = 2$.
10	For $f(x) = \frac{x^4}{\sqrt{x}}$, find the equation of the tangent line and normal line at $x = 3$.


For each problem, you are given a table containing some values of differentiable functions f(x), g(x) and their derivatives. Use the table data and the rules of differentiation to solve each problem.

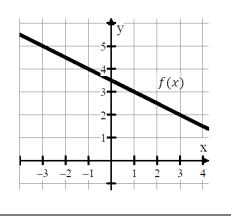
1			
1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	b) Given $s(x) = f(x) - g(x)$, find s'(3)		
	2 4 -1 3 $\frac{3}{2}$ c) Given $p(x) = f(x) \cdot g(x)$, find $p'(4)$		
	3 3 -1 4 1 d) Given $q(x) = \frac{g(x)}{f(x)}$, find $q'(5)$		
	4 2 -1 5 1		
	5 1 0 6 $-\frac{1}{2}$ e) Given $c(x) = (f(x))^{-1}$ find $c'(2)$ f) Given $m(x) = f(g(x))$, find $m'(6)$		
	$6 \ 2 \ 1 \ 4 \ -2$		
2	Let $h(x) = f(g(x))$ and $p(x) = g(f(x))$. Use the table below to		
	compute the following derivatives.		
	a. h'(4)		
	b. p'(3)		
	x 1 2 3 4		
	f(x) 3 2 4 1		
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
	g(x) 4 1 3 2		
	x 1 2 3 4 f(x) 3 2 4 1 f'(x) -9 -3 -2 -8 g(x) 4 1 3 2 g'(x) $\frac{1}{5}$ $\frac{4}{5}$ $\frac{3}{5}$ $\frac{2}{5}$		
3			
3			
	f(3) $g(3)$ $f'(3)$ $g'(3)$		
	-1 2 5 -2		
	The table shows since only a factly for the functions of and their desire finance to a 2. Let <i>b</i> be the functions		
	The table above gives values for the functions f and g and their derivatives at $x = 3$. Let k be the function $f(x)$		
	given by $k(x) = \frac{f(x)}{g(x)}$, where $g(x) \neq 0$. What is the value of $k'(3)$?		
4	f(x)		
	For a given function $f(x)$, it is known that $f(4) = 5$ and $f'(4) = 4$. Let $g(x) = x^2 \cdot f(x)$ and $h(x) = \frac{f(x)}{x-5}$.		
	a. Find an equation of the line that is tangent to the graph of $y = g(x)$ at $x = 4$.		
	b. Find an equation of the line that is tangent to the graph of $y = h(x)$ at $x = 4$.		

AP Calculus AB – Worksheet 28

Identify any values of x for which the graph of f(x) is:

- a) Not continuous
- b) Continuous but not differentiable

Determine if the function is differentiable at the given value.


3)	4)
$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}, x = 1$	$f(x) = \begin{cases} x^2 - 1, & x \le 2\\ 4x - 5, & x > 2 \end{cases}, x = 2$

5) Sketch the graph of a continuous function such that:	6) Sketch the graph of a continuous function such that:
f(0) = 2;	f(0) = 4
$f'(x) = -3$ for $-\infty < x < \infty$	f'(0) is undefined
	f'(x) < 0 for $x < 0$
	f'(x) > 0 for x > 0

7)

The graph of the function f is shown at the right.

The function *h* is defined by $h(x) = f(2x^2 - x)$. Find the slope of the line tangent to the graph of *h* at the point where x = -1

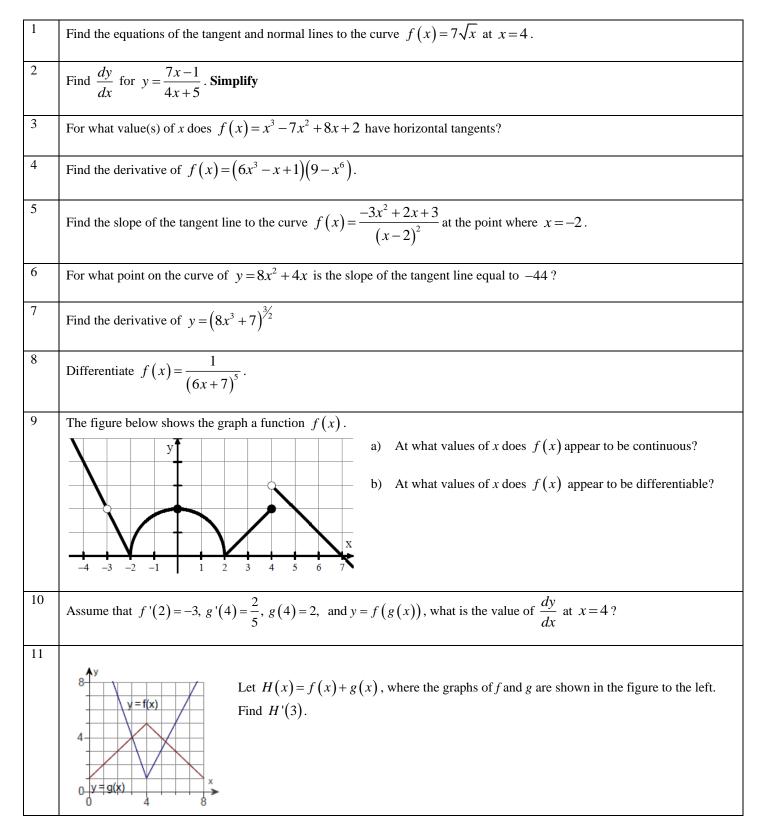
1

Use the limit definition of the derivative to find f'(x) for $f(x) = 2x^2 + 1$

Find the derivative of each function below. Simplify your answer.

2	$y = \frac{2-x}{3x+1}$
3	2
	$y = \frac{1}{\left(5x+1\right)^3}$
*4	$f(x) = \frac{x}{\sqrt{1 - x^2}}$
5	$f(x) = (x^2 - 2)(x^{-1} + 2)$
6	$y = 3x^2 + \frac{2}{x} - \frac{5}{x^2}$

Answer each question about tangents and normals.


7	Find the points on the curve $y = 2x^3 - 3x^2 - 12x + 20$ where the tangent line is parallel to the x-axis.
8	Find the slope of the normal to $f(x) = 2x^3 + x^2 - 1$ at the point where $x = \frac{1}{2}$
9	Find the equation of the tangent to $y = \sqrt{x^3 + 1}$ at the point where $x = 2$.
10	Find $\frac{dy}{dx}$ for $y = (x^2 + 1)(x^3 + 1)$, then find the slope of the normal when $x = -1$.
11	If the line $y = 2x - 3$ is tangent to the function $f(x) = x^2 + 2x - 3$, what is the point of tangency?
12	At what x-value is $y = 3x - 1$ tangent to $f(x) = x^3 + 1$.

For #13-18, use the table below to find the indicated value.

x	f(x)	f'(x)	g(x)	g'(x)
1	1	1	2	2
2	2	1	4	$\frac{3}{2}$
3	3	1	5	$-\frac{1}{2}$
4	4	1	3	$-\frac{3}{2}$
5	5	1	2	-1

- 13. Given h(x) = f(x) + g(x), find h'(2).
- 14. Given d(x) = f(x) g(x), find d'(3).
- 15. Given $p(x) = f(x) \cdot g(x)$, find p'(3).
- 16. Given $q(x) = \frac{g(x)}{f(x)}$, find q'(3).
- 17. Given $k(x) = (f(x))^2$, find k'(1).
- 18. Given c(x) = f(g(x)), find c'(1)

AP Calculus AB - Worksheet 30

